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Fig. 1. Robotic paper cutting with scissors. Left: The objective is to drive scissors to accurately cut curves drawn on the paper, which is hung with the
top edge fixed. Middle: Our execution follows an action primitive sequence, namely Rotate, Close, Open, Push. The meticulous action, visualized as scissors
before (orange) and after (green) each action, ensures accurate cutting in the real world. Right: During execution, large deformation of paper and severe
occlusion between scissors and target curves occasionally occurs. Please refer to the video in the supplementary materials.

Abstract—This paper tackles the challenging robotic task of
generalizable paper cutting using scissors. In this task, scissors
attached to a robot arm are driven to accurately cut curves
drawn on the paper, which is hung with the top edge fixed. Due
to the frequent paper-scissor contact and consequent fracture,
the paper features continual deformation and changing topology,
which is diffult for accurate modeling. To deal with such ver-
satile scenarios, we propose ScissorBot, the first learning-based
system for robotic paper cutting with scissors via simulation,
imitation learning and sim2real. Given the lack of sufficient
data for this task, we build PaperCutting-Sim, a paper simulator
supporting interactive fracture coupling with scissors, enabling
demonstration generation with a heuristic-based oracle policy.
To ensure effective execution, we customize an action primitive
sequence for imitation learning to constrain its action space, thus
alleviating potential compounding errors. Finally, by integrating
sim-to-real techniques to bridge the gap between simulation and
reality, our policy can be effectively deployed on the real robot.
Experimental results demonstrate that our method surpasses all
baselines in both simulation and real-world benchmarks and
achives performance comparable to human operation with a
single hand under the same conditions.

I. INTRODUCTION

Paper cutting, an ancient craft dating back to at least the
6th century [30], has evolved alongside human civilization,
serving as a medium for emotional and symbolic expression
[28]. In modern society, it has wide applications ranging from
decorative art [31] and education to advanced manufacturing
and technology [38, 6]. Humans can use scissors to perform
paper cutting, showcasing their dexterity in tool usage. How-

ever, robots have yet to master this generalizable cutting skill,
which indicates using scissors to cut painted patterns on paper
with visual observation. The main obstacle lies in the intricate
interaction between paper and scissors, characterized by the
continual deformation and changing topology of the paper.
Accurately modeling this dynamics based on first principles
and achieving precise control using Linear Quadratic Regu-
lator or Model Predictive Control is highly challenging. In
contrast, learning-based methods, benefiting from data-driven,
offer a promising alternative without the need for explicit
modeling of this complex system and have the potential to
achieve generalization across diverse cutting tasks.

Despite the strengths of learning-based approaches for many
robotic tasks [4, 41, 35, 32], they fall short on this task partly
due to the following challenges. First, there is insufficient
data for paper-cutting tasks so far. Collecting accurate scissor-
cutting demonstrations directly on a real-world robot system is
laborious and hazardous, making simulation essential for data
generation. However, existing simulators for thin-shell objects
[33, 12, 3] do not support detailed interaction with scissors
including contact and consequent fracture. Second, learning
a generalizable and accurate scissor policy is intrinsically
difficult for this paper cutting task. Given its contact-rich
and deformable nature, even millimetric movements of the
scissors can induce significant bending (as illustrated in Fig.
1) or lead to curves deviating substantially from the intended
target. Meanwhile, the scissors occasionally occlude the target
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Fig. 2. An overview of the learning system. The system first generates expert demonstrations in our built simulation which supports interactive fracture
of the paper. These demonstrations are then used to train a vision-based imitation learning policy that inputs multi-frame point clouds (Blade point cloud is
highlighted in green only for visualization) and outputs parameters of action primitive. Meanwhile, Deviation Correction and Visual Artifact Mimicry provide
data augmentation to imitation learning which ensures a robust transfer from simulation to real world.

curve, leading to an ill-posed decision-making problem. In
this scenario, reinforcement learning methods struggle with
poor data efficiency. Third, the significant sim-to-real gap, both
physical and visual, hinders the deployment of the policy in
the real world. The physical gap, arising from the complex
factors in the real world, sometimes leads to deviations in
the cutting trajectory during execution. Additionally, the visual
gap for this task is mainly due to the edge bleeding artifact
[20], where real-world sensor depth blurs at object edges.
This blurring causes jittery observations of the scissor-paper
interaction, leading to incorrect policy decisions.

To address the above challenges, we introduce ScissorBot,
the first learning-based robotic system for paper cutting with
scissors via a combination of simulation, imitation learning
and sim2real techniques. To mitigate the data scarcity issue,
we develop PaperCutting-Sim, a paper-cutting simulator sup-
porting interactive fracture coupling with scissors, enabling
large-scale demonstration generation with a heuristic-based
oracle policy. This oracle policy leverages privileged infor-
mation that is inaccessible in the real world, allowing us to
distill its knowledge into a vision-based imitation learning
policy. To handle tasks of significant complexity with im-
proved efficiency, we customize an action primitive sequence
which constrains the action space of learning and allivating
potential compounding errors. We also use multi-frame point
clouds as input to complete the occluded and underlying
dynamics information. To bridge the physical and visual gaps
between simulation and reality, we propose data augmentation
on deviation correction and artifact mimicry, respectively. The
former method can adaptively correct compounding errors via
adding out-of-distribution data which pairs deviation states
with corresponding correction action. The latter aims to mimic
edge bleeding artifact in the simulation to achieve visual
alignment with reality.

Through extensive simulated and real-world experiments,
we evaluate the efficacy and generalizability of our learn-
ing policy across three different task difficulty levels: Easy,
Middle, and Hard. Our method improves cutting accuracy by
at least fivefold compared to the best alternative methods, as
measured by Chamfer distance. Furthermore, despite training
only on Easy data from simulation, our method achieves a
Chamfer distance of 2mm and an IoU of 89 for Middle
and Hard patterns in the real world, a performance that
is comparable to humans with single-hand operation. Our

research opens up new oppotunities for contact-rich and fine
manipulation of deformable objects.

II. RELATED WORK

A. Deformable Object Manipulation

The manipulation of deformable objects, such as dough
[13, 14], cloth [25, 35] and rope [5, 12] has been extensively
studied in the in the scentific and engineering disciplines. Zhao
et al. [40] train robots in the real world to learn paper-flipping
skills, and Namiki et al. [18] explore paper folding using
motion primitives. Other studies focus on kirigami [29, 15], the
traditional art of folding and cutting paper to create intricate
designs. For paper cutting, these studies typically use desktop
cutting plotters rather than fully automated robotic systems.
Additionally, various robotic systems have been developed
for cutting deformable objects in different domains, such as
vegetables [16, 17], dough [13, 14], and soft objects with
rigid cores [37]. However, these systems generally employ
tabletop knife cutting, which differs from our approach of
using scissors for cutting.

B. Simulation Environments for Paper Cutting

One line of works build simulators to boost robotic skill
learning for thin-shell materials [12, 3, 7, 33], however they
couldn’t simulate the fracture during the scissors cutting. Some
works focus on simulating the cutting process of soft materials
[9, 37]. Other works studies paper fracture process either
from the theoretical analysis [19, 27], re-meshing algorithm
[21, 36] or its application in kirigami [24, 39]. Overall, none
of the existing works implements the paper cutting simulation
for robot learning, which combines dynamic modeling of
paper and interactive fracture interweaving paper remeshing
according to scissor motion.

C. Imitation Learning

Imitation Learning (IL) [22, 4, 41, 2] is a supervised
learning methodology for training embodied agents using
expert demonstrations. The commonly used Behavior Cloning
(BC) [22] strategy directly trains the policy to imitate expert
actions. Despite its simplicity, this approach has demonstrated
remarkable effectiveness in robotic manipulation [34, 26].
In this paper, we adopt imitation learning and ultilze action
primitive sequence to ensure robustness during execution.



(1) Detection of intersection points (2) Remeshing

Fig. 3. Interactive Fracture in our PaperCutting-Sim. (1): As the scissors close, the fracture occurs along the cutting direction. Intersection points (red
star) can be computed from edge-edge detection and vertex-face detection between the cutting direction (orange dashed) and the paper mesh. (2): (a) The
original paper mesh (blue triangles). (b) Intersection point (red star) and cutting direction (orange dashed). (c) According to the intersection points, new
vertices are added on the existing edges and the endpoint is inserted inside the triangle. The new edges (green solid) are connected between the new inserted
vertex and the opposite vertex in the triangle. (d) The edges between these newly added vertices are split into two pieces (black solid).

III. METHOD

A. Task Formulation and Method Overview

The objective of this task is to accurately cut paper along
drawn curves using scissors, guided by single-view point cloud
input. The scissors are mounted on a single robotic arm, with
the top edge of the paper fixed and the bottom edge free,
enabling generalization to various scenarios.

In order to learn such generalizable scissor skills, we
introduce ScissorBot, a robotic system designed to learn
visuo-motor policies via simulation, imitation learning and
sim2real techniques. As the system depicted in Fig. 2, we
first present our training data source in Sec. III-B, where we
develop the first paper-cutting simulator, PaperCutting-Sim,
and heuristic-based demonstrations generation in Sec. III-C.
We then detail the vision-based imitation learning design in
Sec. III-D and sim2real techniques in Sec. III-E. Finally, we
present a hardware setup for deploying our policy in real-world
scenarios in Sec. III-F.

B. PaperCutting-Sim

We build a paper-cutting simulator, PaperCutting-Sim, to
support the modeling of both paper and scissors, as well
as their contacts and the consequent fracture. The simulator
is implemented in Python and Taichi [10], which supports
parallel computation on GPUs.

Dynamic Model. Following the Kirchhoff-Love shell the-
ory, we model the elastic energy of the paper as the sum
of stretching elastic energy and bending elastic energy. The
stretching elastic energy is modeled as co-rotational linear
elasticity, and the bending elastic energy is calculated using
squared difference of mean curvature [8]. We perform spatial
discretization using the Finite Element Method [21], and up-
date positions and velocities through implicit time integration
[1], which optimizes the incremental potential via Newton’s
method. To model the contact between the paper and the
scissors, we represent the scissors using a signed distance field,
utilize the cubic of the signed distance to calculate collision
energy, and apply Coulomb friction.

Interactive Fracture. Different from cutting simulation
with predefined fracture surfaces [9], interactively handling
fracture coupled with contact is a non-trivial problem. To
address this, we design a two-phase geometry-based approach,
as illustrated in Fig. 3. First, during the closing process of the
scissors, we propose using edge-edge detection and vertex-face
detection to detect the intersection points between the cutting
trajectory and the paper mesh. Then these intersection points

are added to the paper mesh and related edges are connected
and split according to the vertex position relationship inside
triangles. We refer the reader to Appendix B for more details.

C. Demonstration Generation

In this section, we devise an action primitive sequence and
a heuristic-based Oracle policy for large-scale demonstration
generation. For distillation, we preserve high-quality demon-
strations measured by chamfer distance.

Action Primitive Sequence. We designed four action primi-
tives for the scissors in a heuristic manner, namely Open, Push,
Rotate, and Close. These primitives can be combined into a
sequence to cut a straight line on the paper as follows: (1)
Open the scissors to the maximum extent. (2) Push the scissors
to the starting point of the line. (3) Rotate the scissors towards
the endpoint of the line. (4) Close the scissors breaking the
paper. Note that the pushing action is a 1D translation along
the cutting direction as we approximate that the starting point
is in the scissor cut direction.

Oracle Policy. The oracle policy initially discretizes the
target smooth curve into several line segments, with this
approximation scarcely impacting visual appearance. Sub-
sequently, the entire curve can be cut by multiple action
sequences for line segments iteratively. As oracle policy can
access the 3D position of target line during each step, the
pushing distance (p ∈ R1), rotation matrix (R ∈ SO(3)), and
closed angle (c ∈ R1) can be computed by relative position
between scissors and target line. Please refer to Appendix B
for more details.

D. Vision-based Imitation Learning

This section presents the design of our learning framework,
with multi-frame point clouds as input and action parameters
as ouput. The complete network architecture is depicted in
Fig. 2.

Spatial-Temporal Observation Encoding. We first pre-
process raw single-view point cloud using bounding-box
cropping and FPS sampling. Then sequential L-frame point
clouds {Pt−i−1}Li=1, along with a binary mask indicating
whether a visible point originates from the target curve, are
fed into a shared PointNet++ encoder [23] to obtain features
{Ft−i+1}Li=1. These features are concatenated and passed
through a shallow MLP to regress actions parameters.

Primitive Learning. In contrast to selecting the direct 7
DoF scissor pose as our output action space, the output action
parameters are associated with the designed action primitives
mentioned in Sec. III-C. These actions are recurrently executed



for each stage which keeps the order of Push, Rotate, Close,
Open repeatedly. We employ Mean Squared Error (MSE) loss
for the Push and Close terms, and 9D L1 Loss [11] for Rotate.
The overall loss is formulated as:

L = λp(p− p̂)2 + λc(c− ĉ)2 + λR

∑
i,j

|Rij − R̂ij | (1)

where λp, λc, λR are respective weights, and p̂, ĉ, R̂ are
ground truth action values.

E. Sim-to-Real Transfer

Fig. 4. Visualization of Visual Artifact Mimicing (a) Perfect point cloud
in simulation with scissors blade highlighted (green points) (b) Point cloud
with our proposed visual alignment. (c) Point cloud captured in the real world
with ghost noise.

Deviation Correction. We introduce deviation correction
to enhance the robustness for drifting scenarios which somes-
times occurs in the real world. In this approach, we fine-tune
the trained model using correction data, which comprises out-
of-distribution states paired with corrective actions. These data
are generated by introducing random rotation perturbances to
the action during oracle policy execution. As the oracle policy
consistently cuts towards the endpoint of each line segment,
the next action naturally corrects minor drifting errors.

Visual Artifact Mimicry. We propose a simple yet effective
method to mimic edge bleeding artifact in the simulation.
To create continuous value at the edge between foreground
and background in simulated depth image, we preprocess the
depth with an average pooling kernel and add random noise
perpendicular to the surface of the paper to the point cloud
of the blade. In this way, the artifact can be mimicked (Fig.
4(b)) in our training data thus reaching a visual alignment from
simulation to reality.

RGBD 
Camera

Scissors
Target

Robotic 
Arm

Fig. 5. The real-world experiment setup.

F. Hardware System Design

We design a hardware system for the paper-cutting task, as
Fig. 5 shown. The setup includes a Realman robot equipped
with a scissor extension for manipulation and a single Kinect
DK camera to capture RGBD observations. To secure the
paper, we use plastic clips to fix the top edge, leaving the
lower edge free. The target curves are drawn in red on white
paper, with corresponding binary masks obtained through
simple RGB-based segmentation. We use A4 printer paper
(210mm×297mm, 75 g/m2) as the material for the following
experiments.

IV. EXPERIMENTS

In this section, we first evaluate the cutting performance
of our proposed method through comparison with various
baselines and variants in simulated environments. We further
validate our approach in the real-world. Please refer to Ap-
pendix A for abaltion studies and more qualitative results.

A. Benchmark

Easy

Middle

Hard

Fig. 6. Example curves for Easy, Middle and Hard tracks. For Hard track
in the real world, the whole pattern is cropped on an origami sheet.

Task Datasets. We focus on simple smooth curve cutting
and split it into three distinct tracks, illustrated in Fig. 6. In
each track, curves are generated using Bézier curves parame-
terized by four control points. By manipulating the positional
relationship of these control points, we can control the second-
order derivative of the curve, which in turn determines the
complexity of the scissors’ motion. The discussion on non-
smooth and non-simple curves can be found in the Sec. V.

• Easy: In this track, the second-order derivatives of curves
are consistently positive or negative.

• Middle: Curves in this track exhibit varying positive and
negative second-order derivatives.

• Hard: This track comprises several patterns, each com-
posed of two curves from the Easy track. In real-world
settings, this track can be further required to cut the
origami sheet to obtain an axisymmetric closed-shape
pattern.

To demonstrate the generalization capability of our policy,
our training set consists of approximately 5k trajectories solely
from the Easy track. There are 100 curves of each track for
testing.

Evaluation Metrics. In our evaluation process, we utilize
various metrics to gauge the quality of our results across
different difficulty levels. For the all three tracks, we employ



Methods Easy Middle Hard

Chamfer
(mm) Recall@1.5 Recall@5.0 Chamfer

(mm) Recall@1.5 Recall@5.0 Chamfer (mm) mIoU

Open-loop Planing 10.8 9.3 25.0 6.8 10.5 36.3 18.1 31.2
Online Fitting 5.5 31.4 73.6 5.3 21.0 53.1 10.3 63.0
Ours 1.1 85.1 98.6 1.5 79.6 96.6 1.9 91.3

Oracle 1.4 83.1 98.2 1.4 80.1 98.2 1.9 92.2

TABLE I
COMPARISON WITH NON-LEARNING BASED BASELINES IN SIMULATION.

the chamfer distance as a measure of deviation between the
cropped curve and the target curve. Additionally, we report the
Recall metric under different thresholds of chamfer distance,
indicating the proportion of well-cut instances. For trials
completing closed shapes in the Hard track, we further assess
the quality by calculating the mean Intersection over Union
(mIoU) between the cropped pattern and the target pattern,
providing a comprehensive measure of similarity and accuracy.

B. Policy Evaluation in Simulation

Non-learning Baselines.
• Open-loop Planning detects the target goal curve prior

to cutting. Then it discretizes the detected curve into
isometric line segments and plans the scissor translation
and rotation at each step.

• Online Fitting employs an step-by-step line fitting uti-
lizing RANSAC. The fitted line target from the captured
point cloud determines the movement distance and scissor
rotation at each step.

Learning based Baselines.
• Direct Pose Regression. This methodology directly re-

gresses the 7 Degrees of Freedom (DoF) scissor pose
(6D Pose and 1D joint angle) .

• Action Chunking [41]. In this policy, actions for the next
k timesteps are predicted. The current action to execute is
determined from weighted averages across the previous
overlapping action chunk. We adopt the implementation
from [41].

Fig. 7. Visualization of Cutting Results on UV plane of the paper. Target
curves are in red while cropped lines by scissors are in green.

Comparison to Non-learning based Baselines. Our
method exhibits significantly superior cutting accuracy when
compared to non-learning based approaches. As depicted in

Fig. 7, the cutting trajectories of Open-loop Planning sub-
stantially deviates from the target curve. The reason lies in
that Open-loop Planning lacks adaptability to environmental
changes and accumulates a lot of errors during the highly
non-linear interaction between scissors and paper. Although
Online Fitting demonstrates some adaptability by adjusting its
cutting action based on current observations, it falls short of
making optimal decisions, particularly in instances of occa-
sional occlusion. In contrast, our learning policy showcases
remarkable adaptability to dynamic conditions, resulting in
notably precise operations, with a chamfer distance of 1.1mm
compared to 10.8mm and 5.5mm for Open-loop Planning
and Online Fitting respectively.

Method Chamfer
(mm) Recall@1.5 Recall@5.0

Direct Pose Regression 11.2∗ 9.0∗ 24.4∗

Direct Pose Regression +
Action Chunking[41] 11.4∗ 8.9∗ 25.1∗

Ours 1.1 85.1 98.6
Ours + Action Chunking[41] 1.2 84.2 98.5

TABLE II
COMPARISON WITH LEARNING-BASED BASELINES IN SIMULATION. FOR

Direct pose regression AND ITS VARIANCE, WE ONLY CALCULATE ITS
CHAMBER DISTANCE WITH THE FIRST ONE-THIRD OF THE TARGET CURVE

(*).

Effect of the Primitive Learning. The comparison with
learning-based baselines exhibits the effectiveness of our prim-
itive learning. As shown in Fig. 7(c), the alternative frequently
causes separation between scissors and paper and thus fails to
perform the paper-cutting tasks to the end. We only report its
chamber distance with the first one-third of the target curve
in Tab.II. Even incorporating Action Chunking, designed to
mitigate compounding errors, there is no substantial improve-
ment in completing the target curves. This is due to the drastic
state transitions at each step, which complicate the accurate
prediction of future actions. These results highlight the highly
nonlinear nature of the task. In contrast, our designed primitive
constraints the action space of scissors, which minimizes
possible errors during execution.

Generalization to Novel Curves and Patterns. Middle
and Hard targets pose additional challenges due to more
varied patterns, leading to more complex deformation and
fratcure during cutting. Despite being trained on the Easy track
of curves, our policy demonstrates robustness and achieves
performance comparable to the oracle policy when handling



Methods Easy Middle Hard

Finished Rate Chamfer
(mm) Finished Rate Chamfer

(mm) Finished Rate IoU

Human 10/10 2± 1 10/10 2± 1 10/10 92± 3

Ours w/o Visual Artifact Mimicry 0/10 - 0/10 - 0/10 -
Ours w/o Deviation Correction 7/10 2± 1 7/10 3± 1 7/10 84± 8
Ours 9/10 2± 1 8/10 2± 1 8/10 89± 5

TABLE III
QUANTITATIVE RESULTS IN THE REAL WORLD.

Fig. 8. Realworld cutting process on Easy, Middle and Hard tracks.

Middle and Hard targets. This success is due to its generaliz-
ability from careful system design.

C. Policy Evaluation in the Real World

We evaluate the performance of our sim2real model on a
real-world platform. Quantitative and qualitative results are
presented in Table III and Fig. 8, Fig. 10, respectively.

Experiment Details. To understand the capability of our
system, we include experimental results from human oper-
ations with single hand using standard scissors. We further
introduce the concept of Finished rate, subjectively defining
”Finished” for trials which executes smoothly without falling
into tearing, folding, or significant deviation from the target.
After each trial for both policy and human, we capture the
cropped paper using an RGBD camera and compute metrics
such as chamfer distance and IoU. We report the median and
extremum of these metrics in the form of x± u.

(a) Difting Failure (b) Persistent Error (c) Deviation Correction

Fig. 9. Qualatative result of our Deviation Correction. Without using
Deviation Correction, policy trained from simulation frequently falls into
drifting failures (a) or keeps perisitent errors (b). Our Deviation Correction
(c) leads to a accurate and robust deployment.

Result Analysis. As evidenced in Table III, our policy
consistently fails without any sim2real, as a result of confused
perception with the interactions between blades and paper.
Our mimicry strategy mitigates the visual gap and minimize
erratic action prediction, thereby achieve successful deploy-
ment. However, the performance is still still unsatisfactory. As
illustrated in Fig. 9, policies sometimes experience drifting

failures (Fig. 9a) or persistently exhibit errors (Fig. 9b). To
this end, the correction mechanism addaptively corrects the
deviation and enhances the stability and accuracy of the
deployed policy. For example, it enhances the finished rate
from 7/10 to 9/10 in the ”Easy” track and reducing deviation
by 1mm in the Middle track. Combining the above sim2real
techniques, our system achieves comparable performance to
human single-hand manipulation under same condition, which
has only 2mm error from the target curve. Furthermore, it
achieves an IoU of 89 on the Hard track, which is particularly
challenging due to more drastic bending.

V. CONCLUSION, LIMITATIONS AND FUTURE DIRECTIONS

We introduce ScissorBot, the first learning-based robotic
system for generalizable paper cutting using scissors. The
system utilizes demonstrations collected in our newly de-
veloped paper-cutting simulator to train a primitive-based
imitation learning policy and combines sim2real techniques
to achieve robust deployment in the real world. Extensive
experiments exhibit the generalizability and accuracy of our
system on simple smooth curves which cover most of cutting
scenarios. However, scissor cutting for non-simple or non-
smooth curves is still an open problem. Non-smooth curves
like zig-zag patterns must result in the sudden relative pose
change frequently for scissors while non-simple curves will
result in a circle in the scissor trajectory. Both two kinds of
scissors’ motion can’t be achieved considering our single-arm
workspace. To solve these challenging situations, it may be
a dexterous dual-arm cooperation system containing one arm
holding and rotating the paper and the other manipulating
scissors. We leave this bimanual hardware system with policy
design as future works.
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APPENDIX

A. More Qualatative Results

Fig. 10. Realworld results on patterns from Hard tracks. The cropped
pattern from our system has a accurate overlap with the target pattern.

B. Ablation Studies

Basic length (mm) Steps Chamfer (mm)

20 ∼ 29 1.9
15 ∼ 37 1.4
10 ∼ 53 1.3

TABLE IV
EFFECTS OF DISCRETIZATION GRANULARITY FOR CURVES, I.E, THE

BASIC LENGTH OF LINE SEGMENTS.

Horizon Chamfer(mm) Recall@1.5 Recall@5.0

w/o multi-frame 1.5 74.4 94.2
L = 2 1.6 70.4 93.1
L = 4 1.1 85.1 98.6
L = 6 1.1 85.4 98.9

TABLE V
ABLATION STUDY OF TEMPORAL ENCODING AND OBSERVATION

HORIZON.

Filter Data usage Chamfer(mm) Recall@1.5 Recall@5.0

w/o filtering 100% 1.7 74.5 92.5
τ = 1.6 ∼ 90% 1.4 81.8 97.8
τ = 1.0 ∼ 70% 1.1 85.1 98.6
τ = 0.7 ∼ 30% 1.1 85.0 98.6

TABLE VI
ABLATION STUDY ON THE FILTERING THRESHOLD τ .

In this section, we conduct experiments to analyze the
effects of critical parameters and design choices.
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Fig. 11. Cutting process of our method in the simulation on Middle and Hard tracks.

Discretization Granularity. During the generation of ex-
pert data, smooth curves are discretized into line segments as
an approximation. We aim to study the impact of discretization
granularity on efficiency and quality, as reported in Table IV.
It’s evident that as the length of each line segment decreases,
the number of execution steps increases while the quality
improves. When the basic length decreases from 15mm to
10mm, the reduction in chamfer distance is marginal, merely
0.1mm. Thus, we opt for a trade-off choice of 15mm, with
a balance between efficiency and quality.

Observation Horizon (L). We analyze the effect of differ-
ent observation horizons, as detailed in Table V. Policies with
4 or 6 frame horizons outperform that without temporal inputs
by approximately 10 points on Recall@1.5. The superiority
of our spatial-temporal encoding lies in its robustness to
occlusion and deformable dynamics. Although increasing the
horizon from 4 to 6 yields marginal improvements in cutting
quality, e.g., 0.3 for Recall@1.5, we opt for a horizon of
4 in our system to maintain a favorable balance between
performance and efficiency.

Filtering Threshold (τ ). We train our imitation policy using
various demonstration filtering thresholds ranging from 0.7 to
1.6, as well as no filtering, as summarized in Table VI. A
stricter threshold yields better performance and a lower data
usage rate, necessitating the generation of more demonstra-
tions for distillation. In our system, we select τ = 1.0 to
strike a balance between data quality and efficiency.

We consider the occurrence of paper fractures due to the
intersection of the scissor blades. As the scissors close, the
intersection point of the two blades, denoted as P, moves
along the paper surface. The trajectory of this movement forms
the fracture line on the paper. At each time step, we detect this
moving trajectory on the paper mesh and perform remeshing,
which includes vertex insertion, edge connection, and edge
splitting.

New Vertex Insertion: For each time step t, the movement
of P can be represented as a segment E = (Pt,Pt − αVt),
where α is the velocity and V is the cutting direction of the

scissors. Performing edge-edge detection between E and the
paper mesh M will yield most intersection points. For the
endpoints of E, they may not be located at an existing edge,
so we also perform vertex-face detection to get the intersection
points. We insert all the intersection points as new vertices in
order.

New Edge Connection. With the insertion of vertices, we
perform edge connection. For a newly inserted vertex on an
existing edge, we connect it to the opposite vertices in all
triangles containing that edge. For a newly inserted vertex
inside a triangle but not on the edge, we connect it with three
vertices of the triangle.

Edge Splitting: For each newly connected edge, if its two
endpoints are newly inserted vertices, then this edge need to
be splitter.

The action parameters are computed through relative pose
between scissors (blade intersection Pt and cutting direction
Vt) and target line segment (Tarkt = (skt , s

k+1
t )) for each step

t.
When t is the step for Push, the pushing distance pt is

computed as :

pt =
(skt − Pt) ·Vt

∥Vt∥2
Vt (2)

When t is the step for Rotate, the Rotation Rt is computed
using Rodrigues’ rotation formula:

w = Vt ×Tarkt (3)

θ = cos−1(Vt ·Tarkt ) (4)

K =

 0 −wz wy

wz 0 −wx

−wy wx 0

 (5)

Rt = I+ sin θK+ (1− cos θ)K2 (6)

where I is the identity matrix. When t is the step for Close,
the closed angle ct is computed as :

ct = Distance2Angle(
(sk+1

t − Pt) ·Vt

∥Vt∥2
Vt) (7)



where Distance2Angle is a function to map the cutting
distance to the closed angle. The function is depended on the
mechanical structure of scissors and we obtain it via real-world
calibration.

We consider the generation of curves in the uv space of the
paper. In each track, curves are generated using Bézier curves
parameterized by four control points, which are equidistant
along the u-axis. By connecting these four points with three
line segments, we can compute the gradients of these lines. We
approximate the second-order derivatives of the curve by cal-
culating the differences in gradients between these lines. For
the Easy track, the gradient differences are always either posi-
tive or negative, ensuring a consistent curve direction. For the
Middle track, the gradient differences include both positive and
negative values, creating more complex curves. Considering
the robotic arm workspace, scissors cannot undergo significant
rotations, i.e., exceeding 90◦, relative to the initial orientation
along the moving trajectory. Empirically, we constrain the
gradient of the first line to be within [− tan(40◦), tan(40◦)]
and the gradient of the last line within [− tan(60◦), tan(60◦)].

The sequential point cloud features from the PointNet++
encoder are concatenated and fed into three action heads. Each
action head is a shallow MLP with the shape of [L × 512 −
256−64−a], where L is the length of the observation horizon
and a is the dimension of the action parameter. We train the
model from scratch for 120,000 iterations. The learning rate is
initialized at 1×10−4 and decays by a factor of 0.1 at 60,000
and 110,000 iterations, respectively.

For Action Chunking, we follow the implementation of [41],
which predicts k future actions using an exponential weighting
scheme where wi = e−m×i, with w0 representing the weight
for the most recent action. In our experiments, we set k = 4
and m = 0.01.
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