
NaVid-4D: Unleashing Spatial Intelligence in Egocentric RGB-D Videos
for Vision-and-Language Navigation

Haoran Liu1,2∗, Weikang Wan1,2∗, Xiqian Yu3,2∗, Minghan Li2∗, Jiazhao Zhang1,2, Bo Zhao4

Zhibo Chen3, Zhongyuan Wang5, Zhizheng Zhang2,5†, He Wang1,2,5†

Abstract— Understanding and reasoning about the 4D space-
time is crucial for Vision-and-Language Navigation (VLN).
However, previous works lack in-depth exploration in this
aspect, resulting in bottlenecked spatial perception and action
precision of VLN agents. In this work, we introduce NaVid-
4D, a Vision Language Model (VLM) based navigation agent
taking the lead in explicitly showcasing the capabilities of
spatial intelligence in the real world. Given natural language
instructions, NaVid-4D requires only egocentric RGB-D video
streams as observations to perform spatial understanding and
reasoning for generating precise instruction-following robotic
actions. NaVid-4D learns navigation policies using the data
from simulation environments and is endowed with precise
spatial understanding and reasoning capabilities using web
data. Without the need to pre-train an RGB-D foundation
model, we propose a method capable of directly injecting the
depth features into the visual encoder of a VLM. We further
compare the use of factually captured depth information with
the monocularly estimated one and find NaVid-4D works well
with both while using estimated depth offers greater gener-
alization capability and better mitigates the sim-to-real gap.
Extensive experiments demonstrate that NaVid-4D achieves
state-of-the-art performance in simulation environment and
makes impressive VLN performance with spatial intelligence
happen in the real world.

I. INTRODUCTION

Vision-and-language navigation (VLN) is a fundamental
yet challenging task in embodied AI, requiring robots to
navigate unseen environments based on visual input and
natural language instructions [2, 23, 39, 41]. Recent advances
have shifted VLN from a discrete simulator setting [4, 12,
20, 40, 51, 60, 69, 73] to a more realistic continuous setting
in the real-world [28, 39, 50, 52, 55, 72], enabling robots
to navigate more naturally, like humans, rather than merely
transitioning between waypoints on a predefined navigation
graph. Developing a truly generalizable real-world VLN sys-
tem places greater demands on 3D spatial intelligence, par-
ticularly in reasoning about spatial relationships [18, 47, 70]
(e.g., following instructions like “enter the farthest room”).
Emerging large Vision-Language Models (VLMs) show great
potential for addressing these challenges and shaping the
future of VLN research due to their expansive perception
and advanced language comprehension capabilities.

The latest VLN agents [11, 72] leverage Vision-Language
Models (VLMs) to reason about spatial-temporal relation-
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Fig. 1: 4D spatio-temporal reasoning capabilities in vision-
language navigation. NaVid-4D can comprehend and reason about
3D spatial and 1D temporal relationships across diverse tasks and
directly predict actions to follow given instructions. (The images
with blue, grey, and yellow borders represent the start, middle, and
end states of the task, respectively.)

ships during navigation by modeling historical and current
observations through ViT-generated visual tokens. While
these approaches benefit from the perceptual capabilities
of current VLMs, they remain limited by a key drawback:
existing VLMs are based on RGB vision foundation models
that do not explicitly incorporate depth information, lead-
ing to insufficient 3D scene understanding and suboptimal
performance when tasks require reasoning about spatial
relationships.

Recent research has begun to address these limitations
by improving spatial reasoning and understanding in VLMs.
For instance, SpatialVLM [8] introduces a data generation
pipeline that facilitates large-scale training on spatially-aware
visual question-answering (VQA) tasks using 2D input.
SpatialRGPT [14] and SpatialBot [6] further enhance the
spatial reasoning capabilities of VLMs by integrating 3D
inputs into their architectures. While these advancements
have demonstrated spatial intelligence in digital question-
answering tasks, a gap remains before they can be effectively
applied to embodied Vision-Language-Action (VLA) mod-
els. This work seeks to bridge that gap by exploring the 3D
spatial perception capabilities needed for robots to complete
VLN tasks, demonstrating spatial intelligence in the physical



world.
In this work, we introduce NaVid-4D, an end-to-end VLA

model that solely requires egocentric RGB-D video stream
and natural language instructions as model inputs to generate
navigation actions in continuous environments. It makes the
first endeavor to enhance spatial understanding and reasoning
capabilities in VLN tasks and showcase spatial intelligence in
the physical world. Like its predecessor NaVid [72], NaVid-
4D is built upon a pre-trained VLM consisting of a vision
foundation model and a large language model (LLM) to
exploit the general-purpose knowledge acquired from large-
scale pre-training. It is extended to an end-to-end VLA
model for robotic navigation by learning the navigation
policy on data from the simulation environment and further
enhancing the perception with Internet data. Compared to
NaVid, which is RGB-only, NaVid-4D further explores three
essential questions: 1) Do we need explicit 3D features in
VLN tasks? 2) How can 3D features be integrated into pre-
trained foundation models efficiently? 3) What is the impact
of different 3D information sources (captured vs. estimated)
on the performance of VLA models?

A series of studies on VLMs [6, 8, 14] have demonstrated
that depth information is necessary for digital tasks requiring
spatial understanding and reasoning. Embodied intelligence
tasks, which require generating actions in the physical world,
have even higher demands for spatial perception. Therefore,
we believe that explicitly utilizing depth information in VLA
models is also crucial. So far, the biggest challenge lies in
the lack of sufficiently powerful RGB-D vision foundation
models, as acquiring large-scale RGB-D image-text pairs
for pretraining is extremely costly. To address this, we
propose a novel method to efficiently extract depth features
and inject them into an off-the-shelf RGB-based vision
foundation model as the RGB-D encoder. Given the domain
shifts between navigation data and co-trained web data, as
well as between simulation and real-world environments, we
further compare captured depth with estimated depth in terms
of their impacts on end-to-end performance. We find that
NaVid-4D works well with both, while estimated depth offers
greater generalization capability and better mitigates the sim-
to-real gap. Besides, we collect 1.8M image-text pairs as [6]
on digital question-answering tasks and adopt them in a co-
training for NaVid-4D to enhance its spatial perception.

The contributions of this work can be summarized in
three aspects: 1) We build NaVid-4D, an end-to-end VLA
model that solely requires egocentric RGB-D video stream
and natural language instructions as model inputs to gener-
ate navigation actions in continuous environments. 2) We
propose a novel model paradigm and its corresponding
training strategy to efficiently inject depth representations
into the existing RGB-based foundation model, obviating
the high cost of building RGB-D foundation models. 3) We
demonstrate the benefits of explicitly integrating depth infor-
mation for VLN in both simulation environments and sim-
to-real generalization and compare the impacts of adopting
captured or estimated depth information on the final end-to-
end performance.

II. RELATED WORK

Vision-and-Language Navigation. Visual-Language Navi-
gation (VLN) [2] has attracted significant attention in recent
years. A common approach in simulated environments is to
discretize the scene [4, 20, 54, 62], where the robot agent
makes decisions by aligning language and visual observa-
tions to move by teleportation between nodes on a predefined
navigation graph [28, 35, 45, 53, 65, 66]. However, these
approaches often perform poorly when directly transferring
VLN models trained in discrete spaces to continuous 3D real-
world robotic applications [19, 27]. To address this issue,
[39] has utilized the Habitat simulator [58] and proposed
a visual-language navigation benchmark in continuous envi-
ronments (VLN-CE), allowing robot agents to navigate freely
to any unobstructed space within the simulator. At each time
step, the agent predicts actions based on vision observations
and language instructions, using direct low-level control
prediction [9, 10, 21, 56] or selecting navigable subgoals
estimated by a waypoint predictor [27, 37, 38]. Recently,
large language models (LLMs) and vision-language models
(VLMs) [1, 42, 55], trained on internet-scale image, video,
and text data, have demonstrated exceptional capabilities
in multimodal reasoning and cross-domain generalization.
Many VLN models have benefited from integrating these
foundation models into their architectures [12, 13, 28,
72]. Our work is more related to the recent SOTA work
NaVid [72], which is a video-based large VLN model with
only RGB input. In this paper, we propose a VLM-based
navigation model capable of utilizing RGB-D information
which significantly improves the spatial reasoning capability
and navigation performance.
Spatial Reasoning via Vision-Language Models. Recently,
significant efforts have been made to improve the spatial
reasoning capabilities of vision-language models (VLMs).
Pioneering studies [29, 32, 67] have primarily concentrated
on incorporating 3D representations, such as multi-view
images or point clouds, to infuse spatial information into
VLMs. However, the limited availability of multi-view im-
ages and point cloud data constrains the effectiveness of these
approaches. Meanwhile, some approaches have sought to
enhance spatial reasoning abilities without directly incorpo-
rating 3D representations. For instance, ConceptGraph [24]
integrates scene graphs into VLMs to capture spatial relation-
ships. SpatialVLM [8] constructs an Internet-scale 3D spatial
reasoning dataset to train 2D VLMs, significantly improving
their performance on spatial Visual Question Answering
(VQA) tasks. Our work is related to SpatialRGPT [14],
which integrates depth information for enhancing region-
level spatial reasoning in VLMs. In this paper, we focus on
leveraging depth information to enhance the spatial reasoning
capabilities of our VLM-based navigation agent.

III. METHOD: NAVID-4D

A. Task Formulation

In this section, we present the formulation of Vision-and-
Language Navigation in Continuous Environments (VLN-
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Fig. 2: The framework of NaVid-4D. At each time step, NaVid-4D takes as input an egocentric RGB-D video stream and the given
instruction to generate low-level executable action for the next k steps in an end-to-end manner.

CE). At time step t, the agent is provided with a language
instruction I, comprising l words, and a video stream
Ot = {o0, o1, . . . , ot}, comprising a sequence of RGB
frames {x0, x1, . . . , xt} and their corresponding depth maps
{d0, d1, . . . , dt}. At time t, the agent needs to plan low-
level actions {at, at+1, . . . , at+k−1} for the next k steps
based on the current observation ot following the instruc-
tion I. The actions at each timestep can be one of the
four choices: forward, turn left, turn right, or stop. After
at, at+1, . . . , at+k−1 are executed, the agent will receive a
new observation ot+k. In this work, we build a VLA agent
to generate at, at+1, . . . , at+k−1 from an egocentric video
stream Ot and the instruction I at each time step in an
end-to-end manner. We dive into the role and methodology
of explicitly utilizing depth information to unleash spatial
intelligence in a 4D modeling of VLN-CE.

B. Model Paradigm

NaVid-4D is an end-to-end Vision-Language-Action
(VLA) model designed for the VLN-CE task, extended from
a pre-trained Vision Language Model (VLM). It takes as
input a natural language instruction and an RGB-D video
stream from a monocular egocentric camera for continuous
navigation action generation in an end-to-end manner. The
inputs of NaVid-4D include three fine-grained modalities,
i.e., RGB, depth, and language. Although RGB and depth
both belong to the visual modality, they represent related
yet distinct types of information. RGB is better suited for
capturing texture information, while depth maps are more
effective at conveying geometric information. Considering
this nature, we design a novel model paradigm to align

different modalities progressively. Specifically, the model
first encodes RGB and depth information into a shared space.
They are then projected, together with the language modality,
into a more generalized feature space. It is worth noting that
this model paradigm can be built on top of a classical pre-
trained VLM, leveraging its general-purpose knowledge to
enhance the learning of navigation policies.

As illustrated in Fig. 2, the model paradigm of NaVid-4D
comprises a 3D-aware vision encoder, a projector coupled
with a Q-Former, and an LLM-based action decoder. We
elaborate on them below.

3D-aware Vision Encoder. We employ a classical ViT-based
CLIP model [55, 64] and extend it to be the 3D-aware vision
encoder in NaVid-4D. This encoder, initialized from the
CLIP model weights pre-trained on large-scale RGB images,
is responsible for learning visual representations from both
RGB and depth images. Given the distinct characteristics of
RGB and depth information discussed earlier, we propose to
encode RGB and depth separately using different network
parameters in the shallow layers of the vision encoder,
referred to as the “RGB Layers” and “Depth Layers” in
Fig. 2, respectively. These two share the same architecture
and are initialized with the same pre-trained weights from the
RGB-based CLIP model and then evolve individually with
our proposed training strategy introduced later. After these
layers, the RGB and depth information are represented in a
relatively aligned feature space. We then further encode them
with “Shared Layers” to get a set of visual tokens. These
tokens encode visual information in a complementary way,
whereas RGB and depth tokens encode texture and geometric



features cooperatively. Similar to NaVid [72], we compress
the visual tokens when encoding historical frames. For each
time step, experimentally, we recommend adopting 4 content
tokens and 1 context token per historical frame while using
512 content tokens and 2 context tokens (257 RGB tokens
and 257 depth tokens in total) for the current frame.
Token Projector. We adopt a projector coupled with a
Q-Former to further transform visual tokens into a more
generalized space with language aligned in it, making them
compatible with a pre-trained LLM. Its design is similar to
those in [43, 72], and readers can refer to them for details.
Action Decoder. The action decoder in NaVid-4D is ex-
tended from an open-source LLM, i.e., Vicuna-7B [15], by
adding a set of action tokens into its vocabulary dictionary.
These tokens denote different low-level actions called “for-
ward”, “turn left”, “turn right” and “stop”. Different from
NaVid [72], which simultaneously predicts an action type
and a corresponding magnitude for execution in the next step,
NaVid-4D instead predicts a sequence of discrete actions for
the next k steps at each inference. We experimentally observe
that this action modeling achieves performance comparable
with that of NaVid but offers better sample efficiency. Similar
to NaVid, we employ special tokens to organize multi-modal
tokens as illustrated in Fig. 2 to facilitate the training.

C. Training Strategy

The training process of NaVid-4D consists of four distinct
stages: 1) Projector Warmup, 2) Vision Encoder Training, 3)
Instruction-tuning, and 4) DAgger Improvement. In the first
stage, considering that both the vision encoder and the LLM-
based action decoder have undergone large-scale pretraining,
we warm up the projector while keeping the remaining parts
frozen. In this stage, all layers of the vision encoder are
shared over RGB and depth information. When entering
the second stage, we train the 20 “Depth Layers” along
with the subsequent 20 “Shared Layers” while keeping the
“RGB Layers” and the action decoder frozen. During the
last two stages, we unfreeze the LLM-based action decoder
to enhance the alignment of action with instruction and
freeze the vision encoder. Throughout the first three stages,
we adopt our constructed training data consisting of both
navigation policy data and semantic understanding data intro-
duced below. For the final stage, we further incorporate data
generated by rolling out the policy using the DAgger [57]
algorithm.

D. Dataset Construction

Training Data Composition. As introduced earlier, we
collect 320K vision-language-action samples from the simu-
lation environment Habitat [58] to learn navigation policies
and generate 10K navigation instruction reasoning samples
as NaVid [72] to enhance instruction understanding. Besides,
we utilize 1.32M question-answering samples from [22, 26,
33, 34, 44, 48, 49, 59, 63], 98K question-answering samples
from [5], and 40K text samples from [61] to endow NaVid-
4D with general multi-modal LLM capabilities. Additionally,
we incorporate 20K depth map understanding samples, 21K

spatial understanding samples, and 7.5K robot scene under-
standing samples from SpatialBot [6] to further enhance the
model’s spatial understanding and reasoning capabilities. All
these data are combined into a total of 1.84M training sam-
ples for co-training, with all visual information represented
in RGB-D format. The acquisition of depth information is
detailed in the following section.
Depth Information Acquisition. Depth information is easier
to obtain compared to other 3D representations, making
it more feasible to meet the data volume and diversity
requirements of VLA models. In simulation environments,
we can obtain depth information with ground-truth accuracy,
but this is almost impossible in the real world as depth data
collected in the real world inevitably contains noise due to
hardware limitations. For example, captured depth images
often exhibit inaccuracies at object boundaries and may fail
entirely when dealing with transparent or specular objects.
Prior works [3, 31, 68] that directly use ground-truth depth in
simulators have encountered significant sim-to-real gaps due
to the discrepancies in depth distributions between simulation
and real-world environments. Besides, the internet data used
for co-training does not include depth information originally.
This suggests that while using collected depth data may
achieve high accuracy in simulations, it introduces challenges
in bridging the sim-to-real gap and improving generalization
with different data sources. In this work, we conduct exten-
sive experiments to compare these two methods for acquiring
depth, i.e., capturing vs. estimation, with respect to the final
end-to-end performance and further study the best practice
of injecting depth information in existing vision foundation
models. Details are in the experiment section.

E. Implementation details

NaVid-4D is trained on 4 NVIDIA H800 GPUs for 3
days in the first two stages, and 8 NVIDIA H800 GPUs
for 2.5 days in the last two stages. To improve obstacle
avoidance performance, we adopt A* algorithm [25] to refine
training trajectories wherein the distances between the robot
and obstacles are considered in the cost function. Following
NaVid [72], non-navigation video data is sampled at 1 FPS,
while all frames are retained for navigation data. At each
time step, the agent’s action granularity is set to move
forward for 25 cm, turn left/right for 15◦, or decide to stop,
which empirically ensures smooth and continuous movement
in real-world experiments. We initialize Q-Former [16],
BERT [17], and Vicuna-7B [15] using their default pre-
trained weights and initialize all layers of the vision encoder
with the pre-trained weights of EVA-CLIP [64]. Additionally,
we initialize the projector with the corresponding weights of
LLaMA-VID [43] trained in its first stage. For evaluation,
observation images are transferred to a computer equipped
with an NVIDIA GeForce RTX 3090 using ROS2 [46], and
actions are extracted from the model’s output using regular
expression matching [36]. In the real-world experiments,
Metric3Dv2 [30] takes 1.3s to estimate depth, and our model
takes 2.9s to generate 4 actions at each time step.



IV. EXPERIMENTS

In this section, we conduct experiments to study the
following essential questions for evaluating NaVid-4D:

• (1) How well does NaVid-4D perform against state-of-
the-art VLN models?

• (2) How much benefit does the explicit use of depth
information bring to the VLN task?

• (3) What is the proper way to inject depth features into
existing vision foundational models?

• (4) What impact do different methods of obtaining depth
have on the performance of NaVid-4D?

• (5) Is predicting multiple steps at each inference time
effective for performance improvement?

• (6) Is NaVid-4D practical for real-world deployment?

A. Experimental Setup

Simulation Experiments. We conduct experiments on the
VLN-CE benchmark, which offers 16,844 path-instruction
pairs over 90 visually realistic scenes in the Matterport3D [7]
dataset. For a fair comparison, all methods are trained on the
training split containing 10,819 Room-to-Room (R2R) [39]
samples and evaluated on the test split with 1,839 R2R val-
unseen samples. To reduce the computation cost, we adopt
DAgger only in Table I and adopt SpatialQA data only in
Table I and Table V. Regarding the evaluation, we follow
the standard VLN evaluation metrics [21, 39, 71] to report
results, including success rate (SR), oracle success rate (OS),
success weighted by path length (SPL), trajectory length
(TL), and navigation error from goal (NE). An episode is
considered a success if the STOP decision is taken within
3m of the goal position.
Real-world Experiments. For evaluation in real-world en-
vironments, we use the Hexman Echo Plus as the robot
base, equipped with a Kinect DK camera to capture RGB
images, as shown in Fig. 4. To show the advantage of using
depth information in normal navigation tasks, we conduct
instruction-following experiments in diverse real-world en-
vironment scenes. In the instruction-following experiments,
an episode is considered a success if the STOP decision is
taken within 1.5m of the goal position. We also evaluate
spatial reasoning capabilities by conducting experiments on
the 5 categories shown in Fig. 1 separately, and the episode
is considered a success if it reaches the target.

B. Quantitative Results
We study the questions (1) and (2) by quantitatively

comparing NaVid-4D with representative RGB and RGB-
D-based state-of-the-art baselines as follows: Seq2Seq [39]:
Employs a recurrent policy to predict actions directly from
RGB-D observations. CMA [39]: Utilizes cross-modal atten-
tion between instructions and RGB-D observations to predict
action. WS-MGMap [10]: Leverages a multi-granularity
map that incorporates object geometry, texture, and semantic
information. NaVid [72]: Video-based large vision language
navigation model with only RGB input.

The results in Table I show that NaVid-4D outperforms
all baselines by a large margin in simulation, demonstrating

TL NE↓ OS↑ SR↑ SPL↑
Seq2Seq [39] 9.30 7.77 37.0 25.0 22.0
CMA [39] 8.64 7.37 40.0 32.0 30.0
WS-MGMap [10] 10.00 6.28 47.6 38.9 34.3
NaVid [72] 7.63 5.47 49.1 37.4 35.9
NaVid-4D (ours) 11.91 5.99 55.7 43.8 37.1
NaVid-4D (w. aligned) 9.32 3.85 68.1 57.8 53.0

TABLE I: Comparing on VLN-CE R2R Val-Unseen.

TL NE↓ OS↑ SR↑ SPL↑
w/o ViT 9.65 4.88 58.1 44.2 39.6
with ViT 9.81 4.62 60.9 47.3 41.9
Ours 8.84 4.32 61.0 51.4 47.6

TABLE II: Ablation study on the depth encoding method. In
“w/o ViT”, we adopt MLP layers to encode flattened depth patches.
In “with ViT”, we adopt non-shared ViT models for encoding RGB
and depth separately.

Num. of shared layers TL NE↓ OS↑ SR↑ SPL↑
0 (non-shared ViT) 9.81 4.62 60.9 47.3 41.9
10 9.55 4.34 63.9 51.0 45.8
20 (Recommended) 8.84 4.32 61.0 51.4 47.6
30 9.14 4.40 61.2 50.2 45.8

TABLE III: Ablation study on the position of depth feature
injection. The vision encoder consists of 40 layers in total. This
experiment studies how varying the number of shared layers affects
the performance of NaVid-4D.

Train Test TL NE↓ OS↑ SR↑ SPL↑
w/o w/o 9.68 4.72 59.0 45.9 41.1
captured captured 9.03 4.34 60.5 51.1 46.5
captured estimated 9.01 4.51 59.7 49.9 45.4
estimated captured 9.28 4.36 63.5 51.7 47.0
estimated estimated 8.84 4.32 61.0 51.4 47.6

TABLE IV: Ablation study on the depth sources of navigation
data. In all experiments involving depth input, the co-training data
use estimated depth, as only estimated depth is available.

its strong capability in this task. Compared to its pre-
decessor NaVid, NaVid-4D is superior on all evaluation
metrics, particularly achieving 17.1% improvement in SR.
This clearly demonstrates the advantages of explicitly using
depth information in VLN models, which makes it easier
to find the landmarks and follow the instructions correctly.
Note that VLN-CE R2R contains ambiguous descriptions
regarding initial orientation [41], and we find our method can
achieve significant performance enhancement when the ini-
tial orientation is properly aligned with instructions, showing
a remarkable improvement of 31.9% in Success Rate (SR).
Ablation Studies. For questions (3), (4), and (5), we conduct
ablation studies to compare different alternatives for model
design and configuration.

For question (3), we compare different depth encoding
strategies in Table II. In the experiment “w/o ViT”, we
use an MLP to encode flattened depth patches, resulting
in clearly worse performance than “with ViT”. This result
demonstrates that the ViT weights pre-trained on RGB could
serve as a reasonable initialization of a depth encoder to
facilitate the alignment between RGB and depth information.
Considering that RGB and depth are correlated but possess
different characteristics, we propose to adopt non-shared
weights in the shallow layers of the ViT to learn to represent
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Fig. 3: Real-world Experiment Results. The result shows the comparison between NaVid [72] and our method in both instruction-
following tasks and spatial intelligence tasks.

TL NE↓ OS↑ SR↑ SPL↑
Ours 8.84 4.32 61.0 51.4 47.6
Ours (with SpatialQA [6]) 9.25 4.16 64.4 53.8 49.3

TABLE V: Ablation study on using SpatialQA [6] as co-training
data. DAgger is not used here to reduce the training cost.

Num. of steps TL NE↓ OS↑ SR↑ SPL↑
1 9.87 4.88 60.0 44.1 38.7
2 9.80 4.50 63.5 48.9 43.5
4 (Recommended) 8.84 4.32 61.0 51.4 47.6
8 8.95 4.34 59.8 50.5 46.5

TABLE VI: Ablation study on the number of steps in each action
chunk.
their features in a unified space. Thus, we further conduct
an ablation study on the number of shared layers, i.e., the
position of injecting depth features, in Table III. The results
indicate that the optimal choice seems to share the first 20
layers of ViT, meaning that depth information should be
injected at the midpoint of the ViT.

For question (4), we rigorously evaluate the benefits of
explicitly using depth and compare different methods of
acquiring depth, i.e., captured vs. estimated, in Table IV. The
results significantly demonstrate the necessity of explicitly
using depth. Moreover, using estimated depth for training is
advantageous even though the captured depth in simulators
has ground-truth accuracy. This is because the co-training
data includes only estimated depth, so the disparity between
captured depth in navigation data and estimated depth in
co-training data negatively affects performance. Moreover,
when adopting estimated depth during training, we observe
that estimated depth and captured depth deliver comparable
performance in terms of evaluation performance. As for real-
world applications, using estimated depth is better as well
due to the noisy captured depth images. Thus, we recommend
using estimated depth in both simulation and real-world
scenarios. Besides, we also conduct an ablation experiment
on the impact of using SpatialQA [6] data in Table V. The
results show that SpatialQA [6] data enhances performance
in R2R by helping the model better extract and interpret
depth information with its depth-related data.

For question (5), we conduct ablations on the number of
steps in action chunking in Table VI. The results indicate
that predicting 4 steps at each inference yields the highest
performance. This is because predicting multiple steps jointly
encourages the model to learn longer-horizon knowledge,
while predicting too many steps becomes more difficult for
the model to handle. Additionally, chunking multiple steps
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Fig. 4: Real-world results. From top to bottom are the third-person
view trajectory, first-person view RGB images, and estimated depth.

reduces inference costs, making 4-step action chunking a
good trade-off between performance and efficiency.
Real-world Results. We compare NaVid-4D with the
SOTA baseline, NaVid [72], on real-world tasks, including
instruction-following and spatial intelligence evaluations. For
the instruction-following evaluation, as shown in Fig. 3,
the results demonstrate that our model is comparable to
NaVid [72] in real-world instruction-following tasks. Fur-
thermore, we conducted a case study on the five categories
of spatial intelligence abilities, as depicted in Fig. 1, with
the results shown in Fig. 3. The findings indicate that our
model with estimated depth as input significantly surpasses
NaVid [72] in performance across those categories.

V. CONCLUSION

We introduce NaVid-4D, a VLM-based navigation agent
capable of end-to-end generation of low-level actions follow-
ing instructions with an egocentric RGB-D video stream. In
NaVid-4D, we propose a novel model paradigm and training
strategy to explicitly encode and exploit depth information.
Thanks to this, NaVid-4D especially enhances the capability
of spatial understanding and reasoning. The experimental
results show improvements in both simulation and real-
world settings for standard navigation tasks as well as
those requiring spatial reasoning. Currently, NaVid-4D still
faces challenges in long-range tasks due to the high GPU
memory consumption of encoding depth information for
historical frames. Furthermore, converting observations into
point clouds, which more effectively capture 3D features,
may offer the potential to improve the model’s capabilities. In
future work, we plan to explore these approaches for further
improvements.
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