Installation

use conda
conda create -n hw python=3.10
pip install -r requirements.txt

Homework Part 1: PPO Advantage Estimation and Loss
Computation (40%)

In this part of the assignment, you will implement key components of the
Proximal Policy Optimization (PPO) algorithm using NumPy. PPO is a widely
used reinforcement learning algorithm that relies on reliable estimation
of advantages and stable policy updates. This task is focused on under-
standing and implementing different methods of advantage estimation, as
well as the loss functions used in PPO.

Tasks

1. Monte Carlo Advantage Estimation
e Implement the Monte Carlo (MC) method to compute advantages as
the difference between the discounted return GG, and the estimated
value V(s,).
2. TD(0) Residual Advantage Estimation
 Implement the temporal difference (TD) advantage estimator using
the one-step TD error:

0y = Tt‘*'V‘/(5t+1)'_“/(5t>

3. Generalized Advantage Estimation (GAE)
 Implement GAE to interpolate between MC and TD(0) methods using
a A\ parameter. This balances bias and variance in the advantage
estimates.
4. Policy Loss Computation
 Implement the clipped surrogate objective used in PPO:

L% = [, [min (r,4,, clip(r,, 1 —€,1 + €)A,)]

* Include an entropy bonus to encourage exploration.
5. Value Loss Computation
* Compute the mean squared error (MSE) between the predicted value
estimates and the target returns.

Requirements

* Use only NumPy for implementation.
* Use the provided checking functions to validate each component:
— check monte carlo

check td residual
check gae

check policy loss
check value loss

Deliverable

Complete all TODO sections in hw py/partl ppo.py. Ensure all components
pass their respective checks without modification to the test code.

Homework Part 2: Reward Function Design for Getup Task
(30%)

In this part of the assignment, you are tasked with implementing a
custom reward function that enables a quadruped robot to get up from
a fallen state and stabilize its posture. This is a crucial component
in reinforcement 1learning for locomotion tasks, where reward shaping
directly impacts learning efficiency and final behavior quality.

Objective

Design and implement a reward function inside the step method of the
MyGetupEnv class that encourages the robot to:

1. Reach and maintain a desired body height (e.g., standing upright).

2. Achieve a stable orientation (i.e., upright posture with gravity
vector aligned).

3. Minimize deviation from the default pose (joint angles close to a
reference configuration).

4. Minimize body angular velocity (i.e., avoid spinning or jerky motion).

The reward function should output a single scalar that appropriately
balances these objectives. You may use weighted terms or other heuristics
to shape the behavior.

TODO

reward = ...

Deliverable

Complete all TODO sections in hw py/part2 getup.py. Make sure to output
hw py/part2 height error.png and hw py/part2 video.mp4.

* The Height error on hw py/part2 height error.png should be less than
0.15 to get full points.

« If your implementation is generally correct, you will still get most
of the points even if the error is higher than the threshold.

Homework Part 3: Walking Reward Function Design and PPO
Training (30%)

In this part of the assignment, your goal is to design a reward function
that enables a quadruped robot to walk forward smoothly and stably. You
will work inside the MyWalkEnv environment and train a PPO agent to follow
velocity commands accurately.

A Note: Walking control is a challenging problem. Therefore,
most of the reward terms have already been implemented for you.
You only need to implement the following two terms:

* tracking lin vel: reward for tracking the target linear ve-
locity.

 tracking ang vel: reward for tracking the target angular
velocity (yaw rate).

These two components are critical to ensure the robot moves in the
commanded direction.

Objective
The complete reward function encourages:

1. Tracking linear and angular velocity commands.

2. Maintaining stable body height and upright orientation.

3. Minimizing joint and actuator-related costs.

4. Ensuring proper foot-ground interaction (e.g., no slipping, appro-
priate clearance).

5. Encouraging rhythmic foot lifting and air time for natural walking.

The final reward is computed as a weighted combination of many of these
factors, already provided in the starter code.

Reward Code

The final reward expression is structured as:

reward = (
tracking lin vel

0.5 * tracking ang vel
0.2 * reward height

-5.0 * reward orientation
-1.0 * rew_termination
0.5 * rew pose

-0.0002 * rew _torques
-0.01 * rew_action rate
-0.001 * rew_energy

-0.1 * rew_feet slip

-2.0 * rew _feet clearance
-0.2 * rew_feet height
0.1 * rew feet air time
-1.0 * rew _dof

+ + 4+ + 4+ + A+ A+ + o+

Deliverable

Complete all TODO sections in hw py/part3 getup.py. Make sure to output
hw py/part3 LinVel error.png and hw py/part3 video.mp4.

* The Height error on hw py/part3 LinVel error.png should be less than
0.15 to get full points.

e If your implementation is generally correct, you will still get most
of the points even if the error is higher than the threshold.

	Installation
	Homework Part 1: PPO Advantage Estimation and Loss Computation (40%)
	Tasks
	Requirements
	Deliverable

	Homework Part 2: Reward Function Design for Getup Task (30%)
	Objective
	Deliverable

	Homework Part 3: Walking Reward Function Design and PPO Training (30%)
	Objective
	Reward Code
	Deliverable

