
Installation

use conda
conda create -n hw python=3.10
pip install -r requirements.txt

Homework Part 1: PPO Advantage Estimation and Loss
Computation (40%)

In this part of the assignment, you will implement key components of the
Proximal Policy Optimization (PPO) algorithm using NumPy. PPO is a widely
used reinforcement learning algorithm that relies on reliable estimation
of advantages and stable policy updates. This task is focused on under-
standing and implementing different methods of advantage estimation, as
well as the loss functions used in PPO.

Tasks

1. Monte Carlo Advantage Estimation
• Implement the Monte Carlo (MC) method to compute advantages as
the difference between the discounted return 𝐺𝑡 and the estimated
value 𝑉 (𝑠𝑡).

2. TD(0) Residual Advantage Estimation
• Implement the temporal difference (TD) advantage estimator using
the one-step TD error:

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) − 𝑉 (𝑠𝑡)
3. Generalized Advantage Estimation (GAE)

• Implement GAE to interpolate between MC and TD(0) methods using
a 𝜆 parameter. This balances bias and variance in the advantage
estimates.

4. Policy Loss Computation
• Implement the clipped surrogate objective used in PPO:

𝐿CLIP = 𝔼𝑡 [min (𝑟𝑡𝐴𝑡, clip(𝑟𝑡, 1 − 𝜖, 1 + 𝜖)𝐴𝑡)]
• Include an entropy bonus to encourage exploration.

5. Value Loss Computation
• Compute the mean squared error (MSE) between the predicted value
estimates and the target returns.

Requirements

• Use only NumPy for implementation.
• Use the provided checking functions to validate each component:

– check_monte_carlo

1

– check_td_residual
– check_gae
– check_policy_loss
– check_value_loss

Deliverable

Complete all TODO sections in hw_py/part1_ppo.py. Ensure all components
pass their respective checks without modification to the test code.

Homework Part 2: Reward Function Design for Getup Task
(30%)

In this part of the assignment, you are tasked with implementing a
custom reward function that enables a quadruped robot to get up from
a fallen state and stabilize its posture. This is a crucial component
in reinforcement learning for locomotion tasks, where reward shaping
directly impacts learning efficiency and final behavior quality.

Objective

Design and implement a reward function inside the step method of the
MyGetupEnv class that encourages the robot to:

1. Reach and maintain a desired body height (e.g., standing upright).
2. Achieve a stable orientation (i.e., upright posture with gravity

vector aligned).
3. Minimize deviation from the default pose (joint angles close to a

reference configuration).
4. Minimize body angular velocity (i.e., avoid spinning or jerky motion).

The reward function should output a single scalar that appropriately
balances these objectives. You may use weighted terms or other heuristics
to shape the behavior.

TODO: your code here.
Hint: consider these objectives:
1. body height
2. body orientation
3. joint position (error to default pose)
4. body angular velocity (error to zero)

reward = ...

2

Deliverable

Complete all TODO sections in hw_py/part2_getup.py. Make sure to output
hw_py/part2_height_error.png and hw_py/part2_video.mp4.

• The Height error on hw_py/part2_height_error.png should be less than
0.15 to get full points.

• If your implementation is generally correct, you will still get most
of the points even if the error is higher than the threshold.

Homework Part 3: Walking Reward Function Design and PPO
Training (30%)

In this part of the assignment, your goal is to design a reward function
that enables a quadruped robot to walk forward smoothly and stably. You
will work inside the MyWalkEnv environment and train a PPO agent to follow
velocity commands accurately.

⚠ Note: Walking control is a challenging problem. Therefore,
most of the reward terms have already been implemented for you.
You only need to implement the following two terms:

• tracking_lin_vel: reward for tracking the target linear ve-
locity.

• tracking_ang_vel: reward for tracking the target angular
velocity (yaw rate).

These two components are critical to ensure the robot moves in the
commanded direction.

Objective

The complete reward function encourages:

1. Tracking linear and angular velocity commands.
2. Maintaining stable body height and upright orientation.
3. Minimizing joint and actuator-related costs.
4. Ensuring proper foot-ground interaction (e.g., no slipping, appro-

priate clearance).
5. Encouraging rhythmic foot lifting and air time for natural walking.

The final reward is computed as a weighted combination of many of these
factors, already provided in the starter code.

Reward Code

The final reward expression is structured as:

reward = (
tracking_lin_vel

3

+ 0.5 * tracking_ang_vel
+ 0.2 * reward_height
+ -5.0 * reward_orientation
+ -1.0 * rew_termination
+ 0.5 * rew_pose
+ -0.0002 * rew_torques
+ -0.01 * rew_action_rate
+ -0.001 * rew_energy
+ -0.1 * rew_feet_slip
+ -2.0 * rew_feet_clearance
+ -0.2 * rew_feet_height
+ 0.1 * rew_feet_air_time
+ -1.0 * rew_dof

)

Deliverable

Complete all TODO sections in hw_py/part3_getup.py. Make sure to output
hw_py/part3_LinVel_error.png and hw_py/part3_video.mp4.

• The Height error on hw_py/part3_LinVel_error.png should be less than
0.15 to get full points.

• If your implementation is generally correct, you will still get most
of the points even if the error is higher than the threshold.

4

	Installation
	Homework Part 1: PPO Advantage Estimation and Loss Computation (40%)
	Tasks
	Requirements
	Deliverable

	Homework Part 2: Reward Function Design for Getup Task (30%)
	Objective
	Deliverable

	Homework Part 3: Walking Reward Function Design and PPO Training (30%)
	Objective
	Reward Code
	Deliverable

