
Introduction to Computer Vision (Spring 2024)

Assignment 4

Release date: May 24, due date: June 9, 2024 11:59 PM

This assignment includes 3 tasks: implementing and training a PointNet for classification and segmen-
tation, a Mask R-CNN, and a vanilla RNN for image caption. They sum up to 100 points and will be
counted as 10 points toward your final score for this course.

Submission: To submit your homework, please compress your code and results using our provided
script pack.py, and submit to course.pku.edu.cn. Feel free to post in the discussion panel for any questions
and we encourage everyone to report the potential improvements of this assignment with a bonus of up to
5 points.

1. PointNet (35 points):

PointNet is the most widely adopted neural network for point cloud learning. In this question, you
are requested to implement the pipeline of PointNet for both classification and segmentation tasks
on ShapeNetPart1 and then visualize the features. Please read and follow the README to prepare
the environment and dataset.

Figure 1: PoinNet architecture for both classification and segmentation tasks.

a) Points Classification and Segmentation.

First of all, you need to build the PointNet by following the architecture in Fig.1. In implementation,
you will build separate networks for different tasks with different feature dimensions. We provide
the off-the-shelf data-loaders of ShapeNetPart for both classification and segmentation tasks. The
training process may take you about 20 minutes. The content of this question can be found in
model.py.

1Yi L et al. A scalable active framework for region annotation in 3d shape collections[J]. ACM Transactions on Graphics
(ToG), 2016

1

course.pku.edu.cn


a.1)[10 points] For segmentation task, your network should predict the part labels of the given
point cloud. Specifically, we consider the ”airplane” category. Follow the instruction in model.py
to complete the PointNetfeat, PointNetSeg classes. Please refer to train segmentation.py for
training details. You will receive a full score if your training and testing curve looks normal and the
best test accuracy is above 0.6.

a.2)[15 points] For classification task, your network should predict the category of given point
clouds. Follow the instruction in model.py to complete the PointNetCls256D, PointNet-
Cls1024D classes. You are expected to investigate the effect of the dimensions of the global feature.
So in this classification part, you are requested to train two separate PointNets. One is the original
PointNet with 1024D global feature. And another one uses 256D global feature.

You may find that a bigger network with more capacity non-necessarily outperforms a smaller net-
work. Please check train classification.py for more details. You will receive a full score if your training
and testing curve looks normal and the best test accuracy is above 0.85.

Figure 2: Classification task with 1024D (pink) and 256D (blue) global feature. Segmentation task with
1024D global feature (gray)

For submission, put the 3 screenshots of TensorBoard corresponding to the three experiments under
the folder ’PointNet/result’. Name them as ’segmentation.png’, ’classification 256.png’, ’classifica-
tion 1024.png’

b) [10 points] Point Feature Visualization

We have already trained some networks and draw lots of curves. But sometimes, we want a more
comprehensive way to understand what the network actually learned. So in this question, you are
required to visualize the cruciality of n× 1024 points feature before max-pooling in the classification
network(1024D). And the cruciality is simply defined as the maximum value along the point feature
dimensions. The colormap and points-to-ply functions are provided and you can obtain similar
colored point clouds as Fig.3. please see feature vis.py for more details. Choose 4 among the 16
samples that best show the visual results.

For submission, put the 4 feature visualization screenshots under the folder ’PointNet/result’ and
name them as ’0.png’, ’1.png’, ’2.png’, ’3.png’.

2



Figure 3: Feature visualization with colormap. Your results may not be exactly the same.

2. Mask RCNN (30 points):

Mask RCNN is the milestone of the 2D instance segmentation. In this question, you will have the
chance to play with a small Mask RCNN by predicting the instance segmentation of simple shapes,
e.g. triangular, sphere and rectangle. We build the Mask RCNN with torchvision2 and have replaced
the backbone with lightweight mobilenetV2. Some settings have been modified to make it easy to
run on pure CPUs machines. You can create new functions for your convenience. The content of this
question can be found in the folder MaskRCNN.

Figure 4: Input data for Mask RCNN

a)[10 points] Prepare the dataset

Data preparation is always the first if you want to get a network work on your own data. In this
question, you are requested to generate a dataset that contains multiple rectangles, spheres and
triangles.

Several examples can be found in Fig.4. Please complete the MultiShapeDataset class in MaskR-
CNN/visualize.py. After that, run ‘python dataest.py‘ to visualize the dataset.

2https://pytorch.org/tutorials/intermediate/torchvision tutorial.html

3



b)[10 points] Train the Mask RCNN

Now, with all data prepared, we are ready to train a Mask RCNN by running ‘python train.py‘. You
can download the pre-trained weight and modify the path to this checkpoint in line 16. The training
process could cost you 15 ∼ 30 minutes for a good laptop with CPUs.

c)[10 points] Visualize the Mask RCNN results

Finally, we’d like to evaluate the performance of Mask RCNN. Since the computational cost of Mask
RCNN is high, we only train on a small dataset of 10 samples. Therefore, the performance would not
be perfect. Here, we only visualize the results of the Mask RCNN. Simply run ‘python visualize.py‘
and you will see the results as shown in Fig.5. The points would be counted as long as the results
are reasonable :)

Figure 5: Results of the Mask RCNN

3. RNN (35 points):

Temporal analysis is a crucial part of computer vision. In this question, you are requested to im-
plement a vanilla RNN for the image caption task on the COCO dataset. A sample of this dataset
are shown in Fig.6. To cut down on processing time, we have extracted the image features using a
pre-trained VGG-16 network and further processed them with Principal Component Analysis (PCA)
to reduce the dimensionality to 512.

Figure 6: A sample of COCO image caption.

a)[10 points] Implement a single vanilla RNN layer.

4



Specifically, you need to complete the rnn step forward and rnn step backward functions in the
rnn layers.py according to the following equation,

ht = tanh(ht−1Wh + xWx + b) (1)

You should run ‘python check single rnn layer.py‘ to check your implementation and save your an-
swer.

b)[10 points] Implement a RNN model for image captioning.

For simplicity, you are only required to complete the core functions rnn forward and rnn backward
in the rnn layers.py according to Fig.7. You should run ‘python check rnn.py‘ to check your imple-
mentation and save your answer. If you are interested about the complete implementation of the
RNN model, you can refer to the rnn.py for more details.

Figure 7: A computational graph of RNN for many-to-many task.

c)[5 points] Train the RNN model on the COCO dataset.

You can run ‘python train rnn.py‘ to train the model. You will receive a full score if your loss curve
looks normal.

d)[10 points] Visualize the results of the RNN model.

Please complete the sample function in rnn.py according to the comments in that file. Then uncom-
ment the code in the train rnn.py and run it again. Since we only overfit 50 training samples, the
results on training dataset should be perfect while the results on validation dataset may not be that
good. You will receive a full score if the training results are reasonable.

5


