
Introduction to Computer Vision (Spring 2024)

Assignment 2

Release date: April 4, due date: April 20, 2024 11:59 PM

The assignment includes 3 tasks: backpropagating an MLP, implementing batch normalization and
training a simple CNN on CIFAR-10. This assignment is fully covered by the course material from Lecture
4 to 7.

The objective of this assignment is to get you familiar with some useful algorithms of deep learning,
as well as to establish the concept of how to train and tune a network. We offer starting code for all the tasks
and you are expected to implement the key functions of each task. Please read README.md before you start.

1 Notices

1. To submit your homework, please update your personal information in pack.py, run
the pack.py script to compress your code and results and then submit the zip file to
course.pku.edu.cn.

2. Feel free to post in the discussion panel for any questions and we encourage everyone to report the
potential improvements of this assignment with a bonus of up to 5 points.

2 Tasks

1. Backpropagation for an MLP (20 points):

Backpropagation is a fundamental technique for training neural networks. In this question, you
will experience how to write the backpropagation for a toy MLP to achieve binary classification.
Specifically, you will have 10 images from the MNIST dataset and the MLP learns to predict whether
the given image is ”0” or not.

Figure 1: Example results of our BP implementation.

We have already implemented the forward pass including the sigmoid activate function and the cross-
entropy loss. Once you have figured out the workflow of the forwarding, try to implement your own

1

course.pku.edu.cn


backpropagation. Note that, you are only recommended to use Numpy and without using any loop
operations. You can check more details in the slides of lecture 3 and Appendix 4.

2. Batch Normalization (30 points):

Batch normalization is one of the most common modules used in deep learning because it can greatly
reduce the difficulty of optimizing a large model. In this section, you should implement batch
normalization and evaluate the performance by integrating it with a neural network (the same toy
MLP as in Assignment 1). Please complete the bn.py and you should expect the loss to decrease as
Figure 2 (specific numbers can be different due to the implementation details).

Note that you are only allowed to use Numpy in this question. For loops are also not allowed.

a)[10 points] Implement the Forward Pass for Training

First, you are required to implement the forward pass of batch normalization. Specifically, given an
input x ∈ RB×C , in which B refers to the batch size and C refers to the number of channels, your
network should output the correct y and update the running mean of µ ∈ RC and σ ∈ µ ∈ RC for
the purpose of inference.

b)[10 points] Implement the Backward Pass for Training

Afterwards, you are required to implement the backward pass of batch normalization. With the
saved variables from forwarding, you are required to compute the gradient ∂L

∂x ,
∂L
∂γ and ∂L

∂β .

c)[10 points] Implement the Forward Pass for Inference

An important characteristic of batch normalization is the inconsistency between training and in-
ference. In this question, you are expected to perform inference of the given MLP with batch
normalization.

Figure 2: A result of our BN implementation. Your results do not have to be exactly the same as ours.

3. Train a CNN on CIFAR-10 (50 points):

This question is designed to give you a taste of how to train and tune neural networks. Here is a
pipeline you will experience:

1. Establish a baseline and make sure the hyperparameters are chosen appropriately.

2. Identify the problems, e.g. overfitting, in this baseline via visualizing and analyzing the curves.

3. To tackle the problems, either leverage the techniques introduced in the lectures or propose and
implement your tricks.

2



4. Go back to Step 2 until the performance of your model meets your expectations. Sometimes
you may need to tune the hyperparameters again.

Specifically, you are required to implement and train a convolution neural network for classification
on a small dataset CIFAR-10. Don’t worry about not having a GPU since this dataset is small
enough to train on CPUs (we can achieve a performance of > 75% on the validation set within half
an hour under the TOP 1 accuracy metric with CPUs). You can also use Colab from Google to
access free GPUs, as long as you are willing to spend extra time for setup. We provide the starting
code and you can follow the steps below for doing the experiment:

a)[10 points] Implement a CNN

A convolution neural network can extract features from the input images I ∈ RB×H×W×3 and predict
the probability distribution among the classes Y ∈ RB×N , in which B refers to the batch size and N
refers to the number of classes (N = 10 for CIFAR-10).

For the first step, you are required to build a CNN in network.py. We recommend to leverage the
basic modules/layers in PyTorch, e.g. torch.nn.Conv2d. There is no specific requirement about the
structure of your CNN, but we provide an exemplar architecture in Figure 6 for your information
(feel free to ignore it). Note that, you are not allowed to directly use the complete/off-the-shelf CNN
modules, e.g. torchvision.models.resnet50.

b)[10 points] Implement the Cross Entropy Loss

Apart from the network, an important component of deep learning is the loss function. In this
question, you are expected to implement the most popular loss, cross entropy loss, for the classification
task. Once you have finished this step, you can run the train.py and see the results on the training
set and the validation set.

Note that you are not allowed to directly use torch.nn.CrossEntropyLoss in your final submission,
although you can use it to debug.

c)[10 points] Adjust Learning Rate and Visualize Curves

Appropriate hyperparameters can improve the performance of your model. To investigate hyperpa-
rameter tuning, we can draw the curves of the loss function and evaluation metrics to get a feeling
about the training progress.

In this question, you are required to draw the loss curve and accuracy curve on the training set
and validation set under different learning rates (1e-3, 1e-4, 1e-5) during the training process. You
should submit a screenshot of your curves as Figure 3. As long as the performance is reasonable, you
will be fine.

d)[10 points] Data Augmentation and Visualization

3



Figure 3: Screenshot of the curves under different learning rates. To save your time, you don’t have to run
learning rate=1e-2.

In Figure 3, we can find that a large gap between the training accuracy and the validation accuracy,
which indicates that the model is suffering from overfitting. This could be a very common phenomena
for a small dataset. To alleviate this problem, we can leverage data augmentation.

Figure 4: Left: Without augmentation. Middle: Position augmentation. Right: Color augmentation.

In this question, you are required to implement at least two different kinds of data augmentations
in data.py and save the augmented images for visualization as Figure 4. Since the resolution of the
images from CIFAR-10 is too small, you can visualize Lenna.png to check your code and submit
the augmented images of it. After checking the correctness of your augmentation by visualization,
run the train.py again to see if the gap between training accuracy and validation accuracy becomes
smaller.

Note that, the point of this question is to investigate the effect of the data augmentation. Therefore
you are allowed to use any existing publicly available libraries, even in one line if you can find any.

e)[10 points] Further Improve your Network

In d), you have experienced how to identify and resolve the overfitting problem during training neural
networks. Furthermore, sometimes we need the model to achieve certain performance bars. In this

4



question, you are free to improve your own model until the performance meets the bar and your
expectation. You should submit a screenshot as Figure 5 to show your achievement.

Figure 5: Best performance of my model.

We will grade this question according to the criteria in Table 1. You should expect to achieve it within
a few trials even without a GPU (the TA reaches 75% after adding data augmentation without any
other tricks) if you are tackling the correct spots.

TOP1 accuracy(%) ↑ Score

≥ 75% 10
70% ∼ 75% 8
60% ∼ 70% 6
50% ∼ 60% 4
40% ∼ 50% 2

Table 1: Grading policy.

Appendix

1. Some helpful libraries for data augmentation.

• OpenCV-Python, https://docs.opencv.org/4.x/d6/d00/tutorial py root.html

5

https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html


• Pillow(PIL), https://pillow.readthedocs.io/en/stable/

• torchvision.transforms, https://pytorch.org/vision/0.9/transforms.html

• ...

2. Draw curves by TensorboardX https://pytorch.org/docs/stable/tensorboard.html

3. Colab tutorial https://colab.research.google.com/

6

https://pillow.readthedocs.io/en/stable/
https://pytorch.org/vision/0.9/transforms.html
https://pytorch.org/docs/stable/tensorboard.html
https://colab.research.google.com/


Figure 6: An example of a CNN.

7


	Notices
	Tasks

